Automatic modeling of protein backbones in electron-density maps via prediction of Calpha coordinates.

نویسندگان

  • Thomas R Ioerger
  • James C Sacchettini
چکیده

Most crystallographers today solve protein structures by first building as much of the protein backbone as possible and then modeling the side chains. Automating the determination of backbone coordinates by computer-based interpretation of the electron density would enhance the speed and possibly improve the accuracy of the structure-solution process. In this paper, a new computational procedure called CAPRA is described that predicts coordinates of Calpha atoms in density maps and outputs chains of Calpha atoms representing the backbone of the protein. The result constitutes a significant step beyond tracing the density, because there is ideally a one-to-one correspondence between atoms predicted in the chains output by CAPRA and Calpha atoms in the true structure (refined model). CAPRA is based on pattern-recognition techniques, including extraction of rotation-invariant numeric features to represent patterns in the density and use of a neural network to predict which pseudo-atoms in the trace are closest to true Calpha atoms. Experiments with several MAD and MIR electron-density maps of 2.4-2.8 A resolution reveal that CAPRA is capable of building approximately 90% of the backbone of a protein molecule, with an r.m.s. error for Calpha coordinates of around 0.9 A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EM-fold: De novo folding of alpha-helical proteins guided by intermediate-resolution electron microscopy density maps.

In medium-resolution (7-10 A) cryo-electron microscopy (cryo-EM) density maps, alpha helices can be identified as density rods whereas beta-strand or loop regions are not as easily discerned. We are proposing a computational protein structure prediction algorithm "EM-Fold" that resolves the density rod connectivity ambiguity by placing predicted alpha helices into the density rods and adding mi...

متن کامل

Building alternate protein structures using the elastic network model.

We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic netw...

متن کامل

Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-...

متن کامل

Rapid chain tracing of polypeptide backbones in electron-density maps

A method for the rapid tracing of polypeptide backbones has been developed. The method creates an approximate chain tracing that is useful for visual evaluation of whether a structure has been solved and for use in scoring the quality of electron-density maps. The essence of the method is to (i) sample candidate C(alpha) positions at spacings of approximately 0.6 A along ridgelines of high elec...

متن کامل

A probabilistic approach to protein backbone tracing in electron density maps

One particularly time-consuming step in protein crystallography is interpreting the electron density map; that is, fitting a complete molecular model of the protein into a 3D image of the protein produced by the crystallographic process. In poor-quality electron density maps, the interpretation may require a significant amount of a crystallographer's time. Our work investigates automating the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 58 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2002